The two best ways to prevent plagiarism are to:

1.) Reword facts from papers into your own way that best fits with what you are trying to say (i.e., support your goals, objectives, or hypotheses)

AND

2.) Always cite the original source. Even if you may consider the fact common knowledge, cite the source anyway.

Completing these two simple steps will help you to avoid plagiarizing others’ work in the future.

REMEMBER: Self-plagiarism is still plagiarism! Always change submitted abstracts in some way to reduce copying from something you had previously written.

Here is a link to the Committee of Academic Misconduct webpage at Ohio State:
http://oaa.osu.edu/coamresources.html

There are videos on their site describing what plagiarism is and how to prevent it from happening. There are also resources on Academic Integrity and how to maintain it.

To check for plagiarism:

Here is a website that will examine your paper for similarity to other published papers:

www.turnitin.com

Using the WriteCheck tool, students can upload a paper and examine it for instances of plagiarism. The report comes back with a percentage score, and will show what areas of the paper that sound similar to a citation, and lists the citation next to it. The report typically takes about 24 hours to be checked. Be sure to examine the report, especially if the paper that was run contains a literature cited portion because the literature cited section could drive the percent plagiarized score up.

COST: $7.95 per paper, with up to 3 resubmissions. However, as of September 2012, CFAES has purchased a license to the turn-it-in website. Course instructors can set up a class profile to allow students to use this software free of charge.

Below are some screen shots from turnitin.com, and what the results look like:
Phytophthora root and stem rot of soybean (Glycine max) is caused by the necrotrophic pathogen, Phytophthora sojae, a soil borne oomycete that produces spores that can cause devastating yield losses in soybean resulting in $500 million dollars annually in the U.S. Chemical treatments for controlling this disease can be difficult and expensive method. Alternatively, genetic resistance in soybean cultivars has been able to successfully control P. sojae and is a simpler and less costly method. Partial resistance in soybeans is a complex trait controlled by quantitative trait loci (QTL) and variation for the partial resistance to P. sojae can be explained by multiple genes, each contributing to a small portion of the variation observed in populations segregating for partial resistance. Partial resistance is considered to be more durable against P. sojae the race-specific resistance (Rps) because P. sojae strain are not under selective pressure. Some race-specific resistant soybean cultivars have become ineffective against this pathogen because P. sojae has evolved to virulent strains that are resistant to the Rps genes. The addition of higher levels of partial resistance to cultivars will provide a stronger defense against P. sojae because they are not race-specific. Cultivars developed in Ohio generally have high levels of partial resistance to P. sojae; however, we hypothesize that improvement of these breeding lines can be achieved through increasing the introgression of known QTL from plant introductions from South Korea with high levels of partial resistance. The objective of this study is to conduct crosses using a cultivar with high levels of partial resistance and individuals from the Korean introductions that have established QTL contributing to partial resistance, which are not already present in the breeding lines. To achieve this goal, we will use the Ohio cultivar as the recurrent parent, and the KPI lines, as the donor parent, for backcrosses, and will select for the QTL region using previously analyzed molecular markers at each generation until the independent QTL is introgressed with no additional alleles from the donor parent. The progeny will be evaluated for yield loss, due to its introgression, in a field test or determining if multiple QTL can be combined in our breeding lines. The proposed research will be key for producers to control the destructive disease and prevent yield losses from an economically important crop.
For further tips on how to avoid plagiarism or help to reword sentences, contact the Writing Centers listed below:

http://cstw.osu.edu/writingcenter (OSU writing center)
http://owl.english.purdue.edu/ (Purdue Writing center)
http://www.iupui.edu/~uwc/ (Indiana University-Purdue University Indianapolis Writing center)

Grant or proposal writing:
https://carmenwiki.osu.edu/display/10040/Grant+Writing+Resources
http://und.edu/research/research-economic-development/development-compliance/proposal-writing-assistance.cfm

List compiled by:

Rhiannon Schneider, Keith Freewalt, Alex Lindsey, Eun Hyang Han, and Nafeti Mheni.